SET	TYPE	MARKS	QUESTION	CO	PI	Bloom's Level	Accessible For	ANSWER-ONE	ANSWER-ONE STATUS	ANSWER-TWO	ANSWER-TWO STATUS	ANSWER-THREE	ANSWER-THREESTATUS	ANSWERFOUR	ANSWER-FOURSTATUS
A	SINGLE-CORRECT	1	Decision Science is applicable in the Planning of	CO1		Understand	My Institute	Logistics	Incorrect	Transportation	Incorrect	Procurement	Incorrect	All the above	Correct
A	SINGLE-CORRECT	1	EOQ Model involves decision related to	CO1		Understand	My Institute	Logistics	Incorrect	Inventory	Correct	Transportation	Incorrect	Marketing	Incorrect
A	SINGLE-CORRECT	1	Payoff Matrix is to be	CO1		Understand	My Institute	Minimized	Incorrect	Uniform	Incorrect	Maximized	Correct	None of the Above	Incorrect
A	SINGLE-CORRECT	1	\qquad is the characteristic of quantitative technique.	CO1		Understand	My Institute	Objective oriented approach	Incorrect	Interdisciplinary approach	Incorrect	Scientific approach	Incorrect	All of the above	Correct
A	SINGLE-CORRECT	1	Bayesian Analysis is based on	CO2		Apply	My Institute	Non-Probability	Incorrect	Different Probabilities	Incorrect	Equal Probability	Correct	Zero Probability	Incorrect
A	SINGLE-CORRECT	1	What is the probability of getting a sum 9 from two throws of a dice?	CO2		Apply	My Institute	1/6	Incorrect	1/8	Incorrect	1/9	Correct	1/12	Incorrect
A	SINGLE-CORRECT	1	"Scenarios" are also known as	CO1		Understand	My Institute	Course of Action	Incorrect	Decline Stage	Incorrect	Events	Correct	Decision Making	Incorrect
A	SINGLE-CORRECT	1	From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?	CO2		Apply	My Institute	1/15	Incorrect	25/57	Incorrect	35/256	Incorrect	1/221	Correct
A	SINGLE-CORRECT	1	Decision Making under Risk	CO1		Understand	My Institute	Probability is not known	Incorrect	Probability is known	Correct	Probability is irrelevant	Incorrect	None of the Above	Incorrect
A	SINGLE-CORRECT	1	Event of getting a Head and Tail in single toss of a coin is	CO1		Understand	My Institute	Simple	Incorrect	Independent	Incorrect	Exhaustive	Incorrect	Mutually Exclusive	Correct
A	SINGLE-CORRECT	1	20:70:10 Rule was first used by	CO1		Understand	My Institute	General Motors	Incorrect	3M	Incorrect	General Electric	Correct	Neuralinks	Incorrect
A	SINGLE-CORRECT	1	For the decision related to implementation of "Economies of Scale", we go for	CO1		Understand	My Institute	Mass Production	Correct	Mass Customization	Incorrect	Continuous Improvement	Incorrect	Make or Buy	Incorrect
A	SINGLE-CORRECT	1	The probability of Hypotheses is called	CO1		Understand	My Institute	Joint Probability	Incorrect	Disjoint Probability	Incorrect	Priori Probability	Correct	Posteriori Probability	Incorrect
A	SINGLE-CORRECT	1	Sum of Exhaustive events is	CO1		Understand	My Institute		Incorrect	0.5	Incorrect		Correct	None of the above	Incorrect
A	SINGLE-CORRECT	1	If $P(E)=0$, then it is	CO1		Understand	My Institute	Sure Event	Incorrect	Impossible Event	Correct	True Event	Incorrect	None of the Above	Incorrect
A	SINGLE-CORRECT	1	Managers should always use Probability in the form of	CO1		Understand	My Institute	Fraction	Incorrect	Percentage	Correct	Decimal	Incorrect	Ratio	Incorrect
A	SINGLE-CORRECT	1	Most difficult scenario of Decision Making is	CO2		Apply	My Institute	Certainty	Incorrect	Uncertainty	Correct	Risk	Incorrect	None of the Above	Incorrect
A	SINGLE-CORRECT	1	Cost Matrix is to be	CO1		Understand	My Institute	Minimized	Correct	Uniform	Incorrect	Maximized	Incorrect	None of the Above	Incorrect
A	SINGLE-CORRECT	1	Which Excel add in is used for Optimization Problems?	CO1		Understand	My Institute	V look up	Incorrect	Pivot	Incorrect	Solver	Correct	Transpose	Incorrect
A	SINGLE-CORRECT	1	Decision Science deals in	CO1		Understand	My Institute	Normalization	Incorrect	Prototyping	Incorrect	Optimization	Correct	$\begin{array}{\|l} \hline \text { Preliminary } \\ \text { design } \end{array}$	Incorrect
A	SINGLE-CORRECT	1	Decision Science is an approach to decision making which utilizes extensively	CO1		Understand	My Institute	Qualitative analysis	Incorrect	Digital Analysis	Incorrect	Quantitative analysis	Correct	Informative Analysis	Incorrect
A	SINGLE-CORRECT	1	Decision Variables are	CO1		Understand	My Institute	Independent	Incorrect	Controllable	Correct	Uncontrollable	Incorrect	Qualitative	Incorrect
A	SINGLE-CORRECT	1	Maximax Criterion is an \qquad approach.	CO1		Understand	My Institute	Optimistic	Correct	Traditional	Incorrect	Pessimistic	Incorrect	Both Traditional \& pessimistic	Incorrect

SET	TYPE	MARKS	QUESTION	CO	PI	Bloom's Level	Accessible For	ANSWER-ONE	ANSWER-ONE STATUS	ANSWER-TWO	ANSWER-TWO STATUS	ANSWER-THREE	ANSWER-THREESTATUS	ANSWERFOUR	ANSWER-FOURSTATUS
A	SINGLE-CORRECT	1	Minimax Criterion is used to determine the best act when the consequences are in terms of \qquad	CO1		Understand	My Institute	Cost or opportunity Loss	Correct	Profit	Incorrect	Revenue	Incorrect	Sales	Incorrect
A	SINGLE-CORRECT	1	Which Criterion is the best for persons having conservative approach?	CO1		Understand	My Institute	Maximax	Incorrect	Minmin	Incorrect	Cost based approch	Incorrect	Maximin	Correct
A	SINGLE-CORRECT	1	According to EMV Criterion that act is optimal which has \qquad EMV	CO1		Understand	My Institute	Maximum	Correct	Minimum	Incorrect	Moderate	Incorrect	Negative	Incorrect
A	SINGLE-CORRECT	1	According to Maximax criterion \qquad value will in payoff matrix will be considered for decision making	CO1		Understand	My Institute	Minimun value	Incorrect	Average of Values	Incorrect	Maximum	Correct	Can't say with certainity	Incorrect
A	SINGLE-CORRECT	1	If a person earns Profit in a strategy Rs20, Rs 30, Rs40, with corresponding conditions S1,S2,S3 with probabilities $0.3,0.3,0.4$ what will be the EMV of that strategy	CO2		Apply	My Institute	Rs35	Incorrect	Rs40	Incorrect	Rs50	Incorrect	Rs31	Correct
A	SINGLE-CORRECT	1	Probability of any sure event is___	CO1		Understand	My Institute	1	Correct		Incorrect	-1	Incorrect	Can't say with certainity	Incorrect
A	SINGLE-CORRECT	1	In mathematical definition of probability if for event A the exhaustive number of cases are n and m is favorable to the event then $P(A)$ will be	CO1		Understand	My Institute	n / m	Incorrect	m/n	Correct	(n-m)/m	Incorrect	$(\mathrm{m}-\mathrm{n}) / \mathrm{n}$	Incorrect
A	SINGLE-CORRECT	1	If odds in favor of an event A is $\mathrm{a}: \mathrm{b}$ then the probability of the event will be defined as \qquad	CO1		Understand	My Institute	a/b	Incorrect	b/a	Incorrect	a/(a+b)	Correct	b/(a+b)	Incorrect
A	SINGLE-CORRECT	1	Two events are said to be \qquad if any one of them cannot be expected to occur in preference to others.	CO1		Understand	My Institute	Equally Likely	Correct	Dependent	Incorrect	Joint events	Incorrect	Compound Event	Incorrect
A	SINGLE-CORRECT	1	If two Events are in dependent then $\mathrm{P}(\mathrm{A}$ or B$)$ will be equal to	CO1		Understand	My Institute	$P(A)+P(B)$	Correct	$P(A)-P(B)$	Incorrect	$\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$	Incorrect	$P(A) / P(B)$	Incorrect
A	SINGLE-CORRECT	1	If the occurrence of one event influnces the occurrences of the other then the second one will be \qquad on the first.	CO1		Understand	My Institute	Independent event	Incorrect	Dependent event	Correct	Joint events	Incorrect	Compound Event	Incorrect
A	SINGLE-CORRECT	1	The required probability $\mathrm{P}(\mathrm{A} / \mathrm{B})$ is equal to	CO1		Understand	My Institute	$\mathrm{n}(\mathrm{A}$ and B$) / \mathrm{n}(\mathrm{A})$	Incorrect	$\mathrm{n}(\mathrm{A}$ and B$) / \mathrm{n}(\mathrm{B})$	Correct	$\mathrm{n}(\mathrm{A}) * \mathrm{n}(\mathrm{B})$	Incorrect	$\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{B})$	Incorrect
A	SINGLE-CORRECT	1	One card is drawn randomly from a pack of 52 cards find the probability that the drawn card is red or a king	CO2		Apply	My Institute	26/52	Incorrect	24/52	Incorrect	28/52	Correct	30/52	Incorrect
A	SINGLE-CORRECT	1	In a simultaneous throw of two dice find the probability that sum is greater than 12	CO2		Apply	My Institute	Zero	Correct	One	Incorrect	Infinite	Incorrect	Can't be defined	Incorrect
A	SINGLE-CORRECT	1	If $P(A)=0.8, P(B)=0.5, P(A$ or $B)=0.6$ the calculate the probability $\mathrm{P}(\mathrm{A}$ and B$)$	CO2		Apply	My Institute	0.4	Incorrect	0.6	Incorrect	0.7	Correct	0.8	Incorrect

SET	TYPE	MARKS	QUESTION	CO	Pl	Bloom's Level	Accessible For	ANSWER-ONE	ANSWER-ONE STATUS	ANSWER-TWO	ANSWER-TWO STATUS	ANSWER-THREE	ANSWER-THREESTATUS	ANSWERFOUR	ANSWER-FOURSTATUS
A	SINGLE-CORRECT	1	If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.2$, and the events Aand B are independent then probability $P(A$ and $B)$ is	CO2		Apply	My Institute	0.08	Correct	0.6	Incorrect	0.4	Incorrect	0.02	Incorrect
A	SINGLE-CORRECT	1	$\begin{aligned} & \text { if } P(A)=1 / 2, P(B)=1 / 3 \text { and Probability } \\ & P(A B)=1 / 4 \text { obtain } P(A / B) \end{aligned}$	CO2		Apply	My Institute	$\mathrm{P}=0.25$	Incorrect	$\mathrm{P}=0.75$	Correct	$\mathrm{P}=0.65$	Incorrect	$\mathrm{P}=0.45$	Incorrect

